Measurements on Frequency-Converting DUTs using Vector Network Analyzer ZVR

Application Note 1EZ31_1E

Subject to change

5 November 1996, Peter Kraus

Products:

ZVR with option ZVR-B4 ZVRE with option ZVR-B4 ZVRL with option ZVR-B4

Contents:

1. I	Aeasurements on TV Converter	. 2
2. 8	Simulating Frequency Conversion from 1st SAT-TV IF to Baseband	. 5
3. I	Aeasurements on Front End with Double Conversion	.9
4.	Further Application Notes	13
5.	Ordering Information	13

1. Measurements on TV Converter

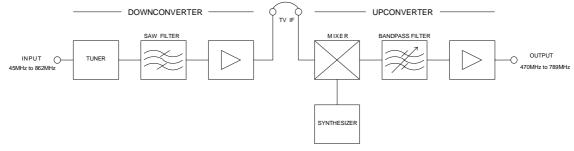


Fig. 1: Block diagram of converter

Measurement problem

ZVR is a vector network analyzer equipped with selective input channels for determining phase relations. Thus a wide dynamic range can be obtained. For measurements on frequency-converting DUTs (output frequency not identical to input frequency), the generator and receiver frequency ranges can be separately set. For measurements on DUTs using a built-in conversion oscillator, as is the case here, the conversion frequency must be exactly known so that the receiver can be accurately tuned to the respective output frequency. The maximum receiving bandwidth is 26.5 kHz. When a wide dynamic range is required, this bandwidth has to be reduced with the consequence that the requirement for the DUT output frequency and the ZVR receive frequency to be in agreement will be greater.

For this reason two characteristics of the DUT are essential: the absolute frequency accuracy and the short-term stability (spurious deviation).

The absolute frequency accuracy can be easily determined by a sweep in the quasi spectrum analyzer mode (center = nominal output frequency, span eg 100 kHz, IF bandwidth 3 kHz); see measurement results. The determined offset is considered in the entry of the receiver offset. If the frequency of the DUT is adjustable, an exact frequency adjustment can be made in this case.

Normally, the short-term stability is not a problem if - as is now common practice oscillators are used that are coupled to a crystal reference via a phase control circuit. In most cases IF bandwidths up to 3 kHz can be handled.

Display of measurement results:

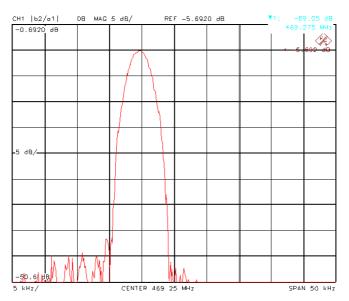


Fig. 2: Measuring the frequency offset of the conversion oscillator (center of diagram = nominal frequency)

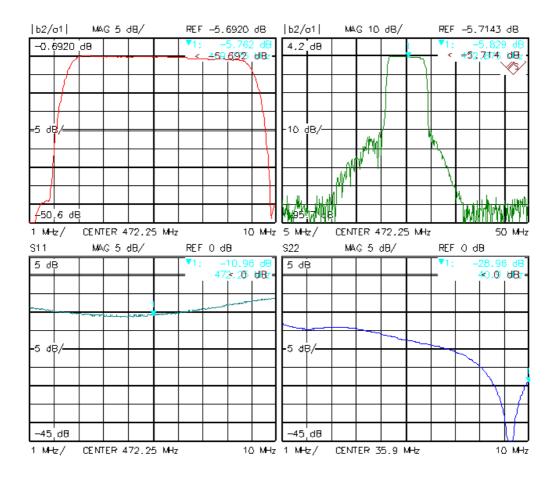


Fig. 3: Downconverter: transmission response, selectivity; input and output matching

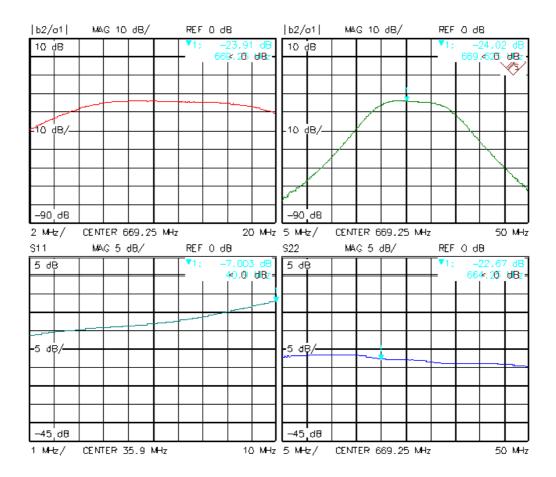


Fig. 4: Upconverter: transmission response, selectivity; input and output matching

Settings required for the measurement:

			AR	BITR	ARY	SYS	rem Fi	REQUENCIES		
FUNDAMENTAL FREQUENCY: 467,25 MHz 477,25 MHz										
FREQ	ON	POWER		NUM		DEN	×F	OFFSET		RESULT
INT SRC		–10 dBm	(1999	1	1)×F		=	467 MHz477 MHz
EXT_SRC1										
EXT SRC2										
RECEIVE			(1	1	1)×F	-508.1 MHz	=	40.9MHz30.9MHz

Fig. 5: Downconverter: frequency setting for transmission response

			AR	BITRA	\RY	SYS	FEM FI	REQUENCIES		
FUNDAMENTAL FREQUENCY: 447,25 MHz 497,25 MHz										
FREQ	ΟN	POWER		NUM		DEN	×F	OFFSET		RESULT
INT SRC		–10 dBm	(1 .222	7	1)×F		=	447 MHz497 MHz
EXT_SRC1										
EXT SRC2										
RECEIVE			(1	/	1)×F	-508.1 MHz	=	60.9MHz10.9MHz

Fig. 6: Downconverter: frequency setting for selectivity measurement

ARBITRARY SYSTEM FREQUENCIES										
FUNDAMENTAL FREQUENCY: 659.25 MHz 679.25 MHz										
FREQ	ΟN	POWER		NUM		DEN	×F	OFFSET		RESULT
INT SRC		–10 dBm	(1	7	1)×F	-708 2 MHz	=	48.9MHz28.9MHz
EXT_SRC1										
EXT SRC2										
RECEIVE			(1	/	1)×F		=	659 MHz679 MHz

Fig. 7: Upconverter: frequency setting for transmission response

			AR	91TR/	KRY	SYS	FEM FI	REQUENCIES		
FUNDAMENTAL FREQUENCY: 644.25 MHz 694.25 MHz										
FREQ	ΟN	POWER		NUM		DEN	×F	OFFSET		RESULT
INT SRC		–10 dBm	(1	1	1)×F	-708 2 MHz	=	63.9MHz13.9MHz
EXT_SRC1										
EXT SRC2										
RECEIVE			(1	1	1)×F		=	644 MHz694 MHz

Fig. 8: Upconverter: frequency setting for selectivity measurement

2. Simulating Frequency Conversion from 1st SAT-TV IF to Baseband

Measurement problem:

When an input signal in the frequency range of eg ± 12 MHz is converted to zero IF, an output frequency range of 0 ± 12 MHz is obtained.

Since this conversion cannot be measured with the ZVR, the frequency range is split up in two subranges, each of which is measured by one of the four measurement channels:

f +12 MHz \rightarrow	0 to 12 MHz
f -12 MHz \rightarrow	12 MHz to 0

Since ZVR has a lower limit frequency of 9 kHz (10 Hz with external measurements option), the ranges are selected as follows:

f +10 kHz (10 Hz) +12 MHz \rightarrow 10 kHz (10 Hz) to 12 MHz

f -10 kHz (10 Hz) -12 MHz \rightarrow 12 MHz to 10 kHz (10 Hz)

Provided adequate conversion conditions are selected in the ZVR, the direction of the output frequency variation can be varied as required (eg upper band section rising, lower section falling).

Test setup:

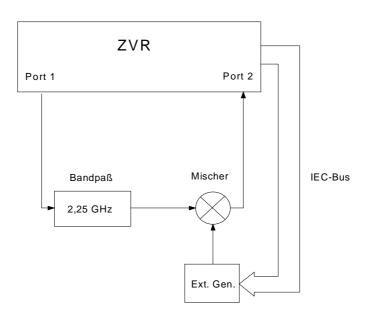


Fig. 9: Block diagram of test setup

Display of measurement results:

Results can be displayed in two ways:

1. Dual-Channel Overlay

In this case the lower band is folded up at the zero frequency and the two band are displayed simultaneously.

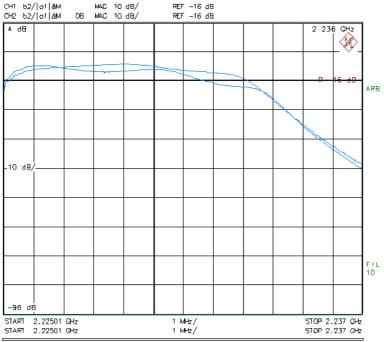


Fig. 10: DUAL CHN OVERLAY display

2. Quad-Channel Splitting

The lower and the upper bands are displayed with increasing input frequency. When measurement channels 1 and 3 are selected, the bands are positioned next to each other so that a continuous passband characteristic is obtained.

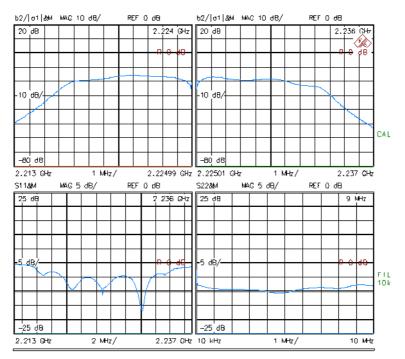


Fig. 11: QUAD CHN SPLIT display

Settings required for the measurement:

FUNDAMENTAL FREQUENCY: 2.22501 GHz 2.237 GHz										
FREO	ON	POWER		NUM		DEN	ΥF	OFFSET		RESULT
INT SRC		-10 d8m	(-1	\square	1) Y F	+4.45 GHz	=	2.22GHz2.21GHz
EXT SRC1	1	10 dBm						2.225 GHz	=	2.236Hz
EXT SRC2										
RECEIVE			$\left(\right)$	-1	1	1) v F	+2.225 GHz	=	10kHz12MHz

ARBITRARY SYSTEM FREQUENCIES

	EXT SOURCES CONFIG											
SRC	REMOTE	IEC ADDR	TYPE									
1	IEC	19	SMP02									
2	QFF	19										

Fig. 12: Channel 1 for DUAL CHN OVERLAY display

|--|

FUNDAMENTA	AL F	REQUENC'	(;	2.225	501	GHz	2.	237 GHz		
FREQ	ON	POWER		NUM		DEN	ΥF	OFFSET		RESULT
INT SRC		-10 d8m	(1		1) YF		=	2.23GHz2.24GHz
EXT_SRC1	~	10 dBm						2.225 GHz	=	2.23GHz
EXT SRC2										
RECEIVE			(-1		1)vF	+2.225 GHz	=	10kHz12MHz

	EXT SOURCES CONFIG											
SRC	REMOTE	IEC ADDR	TYPE									
1	IEC	19	SMP02									
2	OFF	19										

Fig. 13: Channel 2 for DUAL CHN OVERLAY display

FUNDAMENTA	AL K	FREQUENC	(;	2.213	3 GH	Ι <u>Ζ</u>	2.22	2499 GHz		
FREQ	ON	POWER		NUM		DEN	ΥF	OFFSET		RESULT
INT SRC		-10 d8m	(1	7	1) Y F		=	2.21GHz2.22GHz
EXT SRC1	<u>√</u>	10 d8m						2.225 GHz	=	2.23GHz
EXT SRC2										
RECEIVE			$\left(\right)$	-1		1) v F	+2.225 GHz	=	12MHz.,10kHz

ARBITRARY SYS	TEM FREQUENCIES
	- End - Fried O End - Ed

	EXT SOURCES CONFIG								
SRC	REMOTE	IEC ADDR	TYPE						
1	IEC	19	SMP02						
2	OFF	19							

Fig. 14: Channel 1 for QUAD CHN SPLIT display

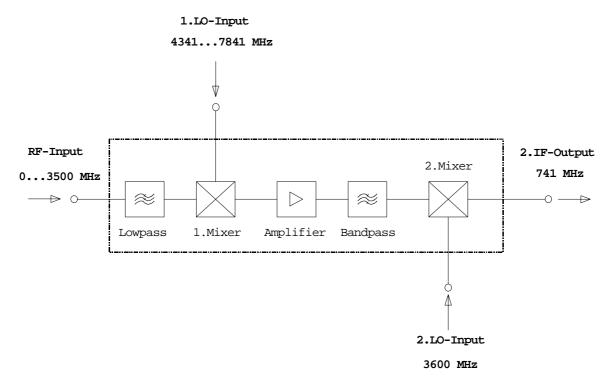
ARBITRAR	SYSTEM FREQUENCIES

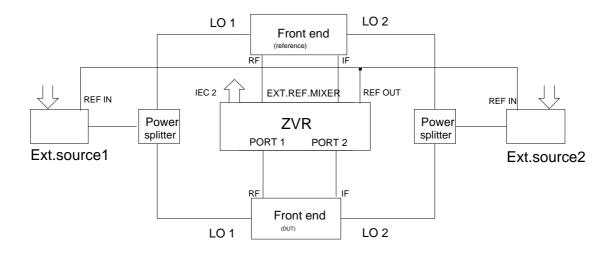
FUNDAMENT,	AL P	FREQUENCI	(;	2.225	501	GHz	2	.237 GHz		
FREQ	ON	POWER		NUM		DEN	ΥF	OFFSET		RESULT
INT SRC		-10 d8m	(1	1	1) Y F		=	2.23GHz2.24GHz
EXT SRC1	1	10 d8m						2.225 GHz	=	2.23CHz
EXT SRC2										
RECEIVE			$\left(\right)$	-1	1	1) v F	+2.225 GHz	=	10kHz12MHz

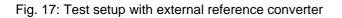
	EXT SOURCES CONFIG								
SRC	REMOTE	IEC ADDR	TYPE						
1	IEC	19	SMP02						
2	OFF	19							

Fig. 15: Channel 3 for QUAD CHN SPLIT display

3. Measurements on Front End with Double Conversion




Fig. 16: Block diagram of front end


The Vector Network Analyzer ZVR is able to control two external generators via the IEC/IEEE-bus interface. This permits DUTs performing up to two frequency conversions to be automatically measured. For measuring the conversion frequency response over the entire frequency range of the DUT, the frequency of one of the two generators has to be varied. Since this variation is made via the IEC/IEEE bus, the sweep time becomes shorter depending on the generator used. However, the full speed can be used when the passband characteristic is measured, as in this case the two external generators are set to a fixed frequency.

To be able to measure the transmission response with maximum accuracy, the power calibration option (ZVR-B7) should be used.

With the aid of this option the frequency response of the internal generators and ZVR receive sections are corrected. Thus errors caused by different generator and receive frequency ranges can be avoided. Parameters S11, |S21| and S22 can be measured.

Another way to increase the measurement accuracy is to use an external reference converter (option ZVR-B6), which corresponds to the DUT or serves as a reference for comparison. This has the advantage that no calibration or level correction is required and that the phase difference of the transmission response between the two DUTs (group delay) can be measured. A disadvantage is that the measurements do not yield absolute values.

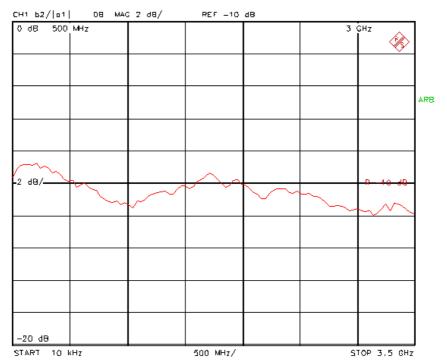


Fig. 18: Frequency response of front end

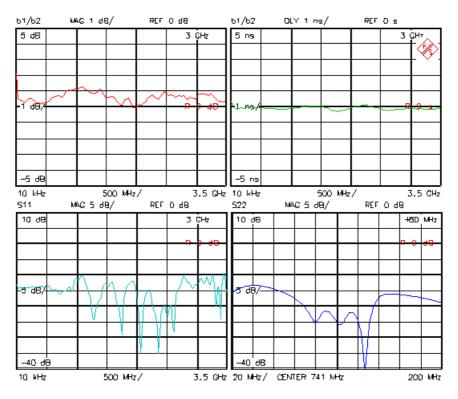


Fig. 19: Frequency response and delay deviation compared to front end; input and output matching

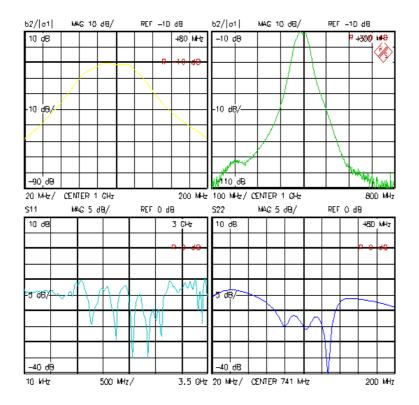


Fig. 20: Passband characteristic for nearby and far-off selectivity; input and output matching

Settings required for the measurement

					ARE	TRAR	Y SYS	STEM FREQUENCE	ES	
FUNDAMENT	AL I	FREQUENC'	e.	10 kl	١z	3	.5 GH	z		
FREQ	ON	POWER		NUM		DEN	ΥF	OFFSET		RESULT
INT SRC		-10 d8m	(1	7	1) xF		=	10kHz3.5GHz
EXT SRC1	×	0 dBm	(1	1	1) v E	+4.341 GHz		4.34GHz7.84GHz
EXT SRC2	V	0 dBm						3.6 GHz	=	3.60Hz
RECEIVE			(0	1	1) v F	+741 MHz	-	741 MHz

	EXT SOURCES CONFIG							
SRC	REMOTE	IEC ADDR	TYPE					
1	IEC	28	SMP02					
2	IEC	19	SMT06					

Fig. 21: Frequency response of front end

					ARE	TRAR	r sys	TEM FREQUENCE	ES	
FUNDAMENT/	AL F	REQUENCY	G_{1}	900	ИНZ	1	1,1 G	Hz		
FREQ	ON	POWER		NUM		DEN	ΥF	OFFSET		RESULT
INT SRC		-10 d8m	(1	7	1) Y F		=	900 MHz.,1,1GHz
EXT_SRC1	57	0 dBm	۲.	0	1	1)xE	+5.341 GHz	_	5.34GHz
EXT SRC2	s/ -	10 dBm						3.6 GHz	=	3.60Hz
RECEIVE			(1	1	1)×F	-1.741 GHz	-	841 MHz.,641 MHz

	EXT SOURCES CONFIG							
SRC	REMOTE	IEC ADDR	TYPE					
1	IEC	28	SMP02					
2	IEC	19	SMT06					

Fig. 22: Passband characteristic

					ARE		r sys	TEM FREQUENCE	ES	
FUNDAMENT	AL I	FREQUENC'	6:	600	иHz		1.4 G	Hz		
FREO	ON	POWER		NUM		DEN	٢F	OFFSET		RESULT
INT SRC		-10 d8m	(1	7	1) YF		=	600 MHz1.4GHz
EXT SRC1	1	0 dBm	7	0	1	1) xE	+5.341 GHz	=	5.34GHz
EXT SRC2	1	10 dBm						3.6 GHz	=	3.60Hz
RECEIVE			(1	1	1) v F	-1.741 GHz	-	1.14CHz341 MHz

	EXT SO	URCES CON	IFIG
SRC	REMOTE	IEC ADDR	TYPE
1	IEC	28	SMP02
2	IEC	19	SMT06

Fig. 23: Far-off selectivity

Peter Kraus, 1ES3 Rohde & Schwarz 5 November 1996

Further Application Notes 4

- [1] O. Ostwald: 3-Port Measurements with Vector Network Analyzer ZVR, Appl. Note 1EZ26_1E.
- H.-G. Krekels: Automatic Calibration of Vector [2] Network Analyzer ZVR, Appl. Note 1EZ30_1E.
- [3] O. Ostwald: 4-Port Measurements with Vector Network Analyzer ZVR, Appl. Note 1EZ25_1E.
- [4] T. Bednorz: Measurement Uncertainties for Vector Network Analysis, Appl. Note 1EZ29_1E.
- P. Kraus: Measurements on Frequency-[5] Converting DUTs using Vector Network Analyzer ZVR, Appl. Note 1EZ32_1E.
- [6] J. Ganzert: Accessing Measurement Data and Controlling the Vector Network Analyzer via DDE, Appl. Note 1EZ33_1E.
- J. Ganzert: File Transfer between Analyzers [7] FSE or ZVR and PC using MS-DOS Interlink, Appl. Note 1EZ34_1E.
- O. Ostwald: Group and Phase Delay Mea-[8] surements with Vector Network Analyzer ZVR, Appl. Note 1EZ35_1E.
- O. Ostwald: Multiport Measurements using [9] Vector Network Analyzer, Appl. Note 1EZ37_1E.
- [10] O. Ostwald: Frequently Asked Questions about Vector Network Analyzer ZVR, Appl. Note 1EZ38_3E.
- [11] A. Gleißner: Internal Data Transfer between Windows 3.1 / Excel and Vector Network Analyzer ZVR, Appl. Note 1EZ39_1E.
- [12] A. Gleißner: Power Calibration of Vector Network Analyzer ZVR, Appl. Note 1EZ41_2E
- [13] O. Ostwald: Pulsed Measurements on GSM Amplifier SMD ICs with Vector Analyzer ZVR, Appl. Note 1EZ42_1E.
- [14] O. Ostwald: Zeitbereichsmessungen mit dem Netzwerkanalysator ZVR, Appl. Note 1EZ44 1D.

5 **Ordering Information**

Order designation	Туре	Frequency range	Order No.
Vector Network Analyzers (test sets included) *			
Vector Network Analyzers (test sets included) * 3-channel, unidirectional, ZVRL 9 kHz to 4 GHz 1043.0009.41			
	ZVRL	9 KHZ to 4 GHZ	1043.0009.41
50 Ω, passive 3-channel, bidirectional,	ZVRE	9 kHz to 4 GHz	1043.0009.51
50 Ω , passive	ZVRE	9 KHZ 10 4 GHZ	1043.0009.51
3-channel, bidirectional,	ZVRE	300 kHz to 4 GHz	1043.0009.52
50 Ω , active		300 KHZ 10 4 OHZ	1045.0005.52
4-channel, bidirectional,	ZVR	9 kHz to 4 GHz	1043.0009.61
50 Ω , passive		0 10 12 10 1 01 12	101010000101
4-channel, bidirectional.	ZVR	300 kHz to 4 GHz	1043.0009.62
50 Ω , active			10.00000002
3-channel, bidirectional,	ZVCE	20 kHz to 8 GHz	1106.9020.50
50 Ω , active			110010020100
4-channel, bidirectional,	ZVC	20 kHz to 8 GHz	1106.9020.60
50 Ω , active			110010020100
,	۲		
Alternative Test Sets *			
75 Ω SWR Bridge for ZVRL (instead of 50 Ω) ¹⁾			
			4040 7777
75 Ω, passive	ZVR-A71	9 kHz to 4 GHz	1043.7690.18
75 Ω SWR Bridge Pairs	s for ZVRE	and ZVR (instea	ad of 50 Ω) ¹⁾
75 Ω, passive	ZVR-A75	9 kHz to 4 GHz	1043.7755.28
75 Ω, active	ZVR-A76	300 kHz to 4 GHz	1043.7755.29
	•	•	
Options			
AutoKal			1011 0005 00
Time Domain	ZVR-B1 ZVR-B2	0 to 8 GHz same as analyzer	1044.0625.02 1044.1009.02
Mixer Measurements ²⁾	ZVR-B2	same as analyzer	1044.1215.02
Reference Channel Ports	ZVR-B4	same as analyzer	1044.1415.02
Power Calibration ³⁾	ZVR-B7	same as analyzer	1044.1544.02
3-Port Adapter	ZVR-B8	0 to 4 GHz	1086.0000.02
Virtual Embedding	ZVR-K9	same as analyzer	1106.8830.02
Networks ⁴⁾	2010103	Sume as analyzer	1100.0000.02
4-Port Adapter (2xSPDT)	ZVR-B14	0 to 4 GHz	1106.7510.02
4-Port Adapter (SP3T)	ZVR-B14	0 to 4 GHz	1106.7510.03
Controller (German) 5)	ZVR-B15	-	1044.0290.02
Controller (English) ⁵⁾	ZVR-B15	-	1044.0290.03
Ethernet BNC for ZVR-B15	FSE-B16	-	1073.5973.02
Ethernet AUI for ZVR-B15	FSE-B16		1073.5973.03
IEC/IEEE-Bus Interface for	FSE-B17	-	1066.4017.02
ZVR-B15			
Generator Step Attenuator	ZVR-B21	same as analyzer	1044.0025.11
PORT 1			
Generator Step Attenuator	ZVR-B22	same as analyzer	1044.0025.21
PORT 2 ⁶⁾	7) (D. 200		4044 0005 15
Receiver Step Attenuator	ZVR-B23	same as analyzer	1044.0025.12
PORT 1			4044 0005 00
Receiver Step Attenuator	ZVR-B24	same as analyzer	1044.0025.22
PORT 2 External Measurements	ZVR-B25	10 Hz to 4 GHz	1044.0460.02
External Measurements, 50 $\Omega^{7)}$	211-023	(ZVR/E/L)	1044.0400.02
00.22		20 kHz to 8 GHz	
		(ZVC/E)	

¹⁾ To be ordered together with the analyzer.

2) Harmonics measurements included.

⁴⁷ Harmonics measurements included.
³ Power meter and sensor required.
⁴ Only for ZVR or ZVC with ZVR-B15.
⁵ DOS, Windows 3.11, keyboard and mouse included.
⁶ For ZVR or ZVC only.

7) Step attenuators required.

* Note:

Active test sets, in contrast to passive test sets, comprise internal bias networks, eg to supply DUTs